Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Neurosurgery ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551340

RESUMO

BACKGROUND AND OBJECTIVES: Neurosurgeons and hospitals devote tremendous resources to improving recovery from lumbar spine surgery. Current efforts to predict surgical recovery rely on one-time patient report and health record information. However, longitudinal mobile health (mHealth) assessments integrating symptom dynamics from ecological momentary assessment (EMA) and wearable biometric data may capture important influences on recovery. Our objective was to evaluate whether a preoperative mHealth assessment integrating EMA with Fitbit monitoring improved predictions of spine surgery recovery. METHODS: Patients age 21-85 years undergoing lumbar surgery for degenerative disease between 2021 and 2023 were recruited. For up to 3 weeks preoperatively, participants completed EMAs up to 5 times daily asking about momentary pain, disability, depression, and catastrophizing. At the same time, they were passively monitored using Fitbit trackers. Study outcomes were good/excellent recovery on the Quality of Recovery-15 (QOR-15) and a clinically important change in Patient-Reported Outcomes Measurement Information System Pain Interference 1 month postoperatively. After feature engineering, several machine learning prediction models were tested. Prediction performance was measured using the c-statistic. RESULTS: A total of 133 participants were included, with a median (IQR) age of 62 (53, 68) years, and 56% were female. The median (IQR) number of preoperative EMAs completed was 78 (61, 95), and the median (IQR) number of days with usable Fitbit data was 17 (12, 21). 63 patients (48%) achieved a clinically meaningful improvement in Patient-Reported Outcomes Measurement Information System pain interference. Compared with traditional evaluations alone, mHealth evaluations led to a 34% improvement in predictions for pain interference (c = 0.82 vs c = 0.61). 49 patients (40%) had a good or excellent recovery based on the QOR-15. Including preoperative mHealth data led to a 30% improvement in predictions of QOR-15 (c = 0.70 vs c = 0.54). CONCLUSION: Multimodal mHealth evaluations improve predictions of lumbar surgery outcomes. These methods may be useful for informing patient selection and perioperative recovery strategies.

2.
Int Immunopharmacol ; 131: 111845, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531171

RESUMO

OBJECTIVE: To determine the effective and safe intravenous doses of mesenchymal stem cells (MSCs)-derived microvesicles (MVs) and to elucidate the possible causes of death in mice receiving high-dose MVs. METHODS: MVs were isolated from human MSCs by gradient centrifugation. Mice with collagen-induced arthritis were treated with different doses of intravenous MVs or MSCs. Arthritis severity, white blood cell count, and serum C-reactive protein levels were measured. To assess the safety profile of MSCs and MVs, mice were treated with different doses of MSCs and MVs, and LD50 was calculated. Mouse lungs and heart were assessed by live fluorescence imaging, histopathological measurements, and immunohistochemistry to explore the possible causes of death. Serum concentrations of cTnT, cTnI, and CK-MB were determined by ELISA. With the H9C2 cardiomyocyte cell line,  cellular uptake of MVs was observed using confocal microscopy and cell toxicity was assessed by CCK-8 and flow cytometry. RESULTS: Intravenous treatment with MSCs and MVs alleviated inflammatory arthritis, while high doses of MSCs and MVs were lethal. Mice receiving a maximum dose of MSCs (0.1 mL of MSCs at 109/mL) died immediately, while mice receiving a maximum dose of MVs (0.1 mL of MVs at 1012/mL) exhibited tears, drooling, tachycardia, shortness of breath, unbalanced rollover, bouncing, circular crawling, mania, and death. Some mice died after exhibiting convulsions and other symptoms. All mice died shortly after injecting the maximum dose of MSCs. Histologically, mice receiving high doses of MSCs frequently developed pulmonary embolism, while those receiving high doses of MVs died of myocardial infarction. Consistently, the serum levels of cTnT, cTnI, and CK-MB were significantly increased in the MVs-treated group (P < 0.05). The LD50 of intravenous MVs was 1.60 × 1012/kg. Further, MVs could enter the cell. High doses of MVs induced cell apoptosis, though low concentrations of MVs induced cell proliferation. CONCLUSIONS: Appropriate dosages of MVs and MSCs are effective treatments for inflammatory arthritis while MVs and MSCs overdose is unsafe by causing cardiopulmonary complications.


Assuntos
Artrite , Micropartículas Derivadas de Células , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Citometria de Fluxo , Células-Tronco Mesenquimais/metabolismo , Artrite/patologia
3.
Inorg Chem ; 63(12): 5611-5622, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38477101

RESUMO

The significant threat posed by the high toxicity of heavy metals and antibiotics in water pollutants has prompted a growing emphasis on the development of highly efficient removal methods for these pollutants. In this paper, flexible electrospinning polyacrylonitrile (PAN) nanofiber-supported CdBi2S4 was synthesized via a hydrothermal method, followed by amination treatment with diethylenetriamine (DETA). The as-prepared CdBi2S4/NH2-PAN nanofiber, enriched with sulfur vacancies, demonstrated outstanding visible-light trapping ability and a suitable band gap, leading to efficient separation and transport of photogenerated carriers, ultimately resulting in exceptional photocatalytic capability. The optimal 3-CdBi2S4/NH2-PAN nanofiber achieved impressive reduction rates of 92.26% for Cr(VI) and 96.45% for tetracycline hydrochloride (TCH) within 120 min, which were much higher than those for CdS/NH2-PAN, Bi2S3/NH2-PAN, and CdBi2S4/PAN nanofibers. After five cycles, the removal rate of the CdBi2S4/NH2-PAN nanofiber consistently remained above 90%. Their ease of separation and recovery from the application environment contributes to their practicality. Additionally, compared with conventional suspended particle catalyzers, the composite nanofiber exhibited remarkable flexibility and self-supporting properties.

4.
Ann Rheum Dis ; 83(5): 624-637, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38331588

RESUMO

OBJECTIVES: Obstetric antiphospholipid syndrome (OAPS) is an autoimmune disease characterised by the presence of antiphospholipid antibodies in circulation and pathological pregnancy. However, the pathogenesis of OAPS remains unknown. We aimed to reveal cellular compositions and molecular features of decidual cells involved in the development of OAPS using single-cell RNA sequencing (scRNA-seq). METHODS: We performed unbiased scRNA-seq analysis on the first-trimester decidua from five OAPS patients and five healthy controls (HCs), followed by validations with flow cytometry, immunohistochemical staining and immunofluorescence in a larger cohort. Serum chemokines and cytokines were measured by using ELISA. RESULTS: A higher ratio of macrophages but a lower ratio of decidual natural killer (dNK) cells was found in decidua from OAPS compared with HCs. Vascular endothelial cells shrinked in OAPS decidua while having upregulated chemokine expression and conspicuous responses to IFN-γ and TNF-α. Macrophages in OAPS had stronger phagocytosis function, complement activation signals and relied more on glycolysis. dNK cells were more activated in OAPS and had enhanced cytotoxicity and IFN-γ production. Downregulation of granules in OAPS dNK cells could be associated with suppressed glycolysis. Moreover, stromal cells had a prosenescent state with weakened immune surveillance for senescent cells in OAPS. In addition, the cellular interactions between decidual immune cells and those of immune cells with non-immune cells under disease state were altered, especially through chemokines, IFN-γ and TNF-α. CONCLUSION: This study provided a comprehensive decidual cell landscape and identified aberrant decidual microenvironment in OAPS, providing some potential therapeutic targets for this disease.


Assuntos
Síndrome Antifosfolipídica , Gravidez , Feminino , Humanos , Análise da Expressão Gênica de Célula Única , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais , Decídua/metabolismo , Quimiocinas , Homeostase
5.
Front Microbiol ; 15: 1341451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322321

RESUMO

Background: Generally, enterococci bacteria cause nosocomial infections and are major indicators of bacterial contamination in marine bathing beach. However, a method for the rapid and simultaneous detection of multiple pathogenic enterococci has not been developed on account of the wide variety of pathogenic enterococci and their existence in complex matrices. Methods: Immunoinformatics tools were used to design a multi-epitope antigen for the detection of various pathogenic enterococci by using the sequence of dltD gene on enterococci lipoteichoic acid (LTA) surface, which is associated with toxicological effects. The multi-epitopes included enterococci such as Enterococcus faecalis, E. gallinarum, E. raffinosus, E. durans, E. faecium, E. hirae, E. thailandicus, E. casseliflavus, E. avium, E. mundtii, E. lactis, E. solitarius, E. pseudoavium, and E. malodoratum. Microscale thermophoresis (MST) and western blot were carried out to detect the affinity between multi-epitope antigens and antibodies and between multi-epitope antibodies and bacteria. Furthermore, the detection of pathogenic enterococci was carried out by using immunomagnetic beads (IMBs) and immune chromatographic test strip (ICTS). Results: The multi-epitope antibody had a satisfactory affinity to the antigen and enterococci. IMBs and ICTS were detected with a minimum of 101 CFU/mL and showed incompatibility for Vibrio parahemolyticus, V. vulnifcus, V. harveyi, V. anguillarum, and Edwardsiella tarda. Implication: The present study demonstrated that the multi-epitope antigens exhibited excellent specificity and sensitivity, making them highly suitable for efficient on-site screening of enterococci bacteria in marine bathing beaches.

6.
Food Funct ; 15(5): 2381-2405, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376230

RESUMO

Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Insulinas , Estilbenos , Humanos , Hipoglicemiantes/farmacologia , Resveratrol/farmacologia , Dieta , Estilbenos/farmacologia , Estilbenos/química
7.
Food Sci Nutr ; 12(2): 765-775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370083

RESUMO

Formulas containing intact cow milk protein are appropriate alternatives when human milk (HM) is not feasible. However, for babies with a physician-diagnosed cow milk protein allergy (CMPA), hydrolyzed formulas are needed. We conducted a 3-month, open-label, nonrandomized concurrent controlled trial (ChiCTR2100046909) between June 2021 and October 2022 in Qingdao City, China. In this study, CMPA toddlers were fed with a partially hydrolyzed formula containing synbiotics (pHF, n = 43) and compared with healthy toddlers fed a regular intact protein formula (IF, n = 45) or HM (n = 21). The primary endpoint was weight gain; the secondary endpoints were changes in body length and head circumference of both CMPA and healthy toddlers after 3-month feeding; and the exploratory outcomes were changes in gut microbiota composition. After 3 months, there were no significant group differences for length-for-age, weight-for-age, or head circumference-for-age Z scores. In the gut microbiota, pHF feeding increased its richness and diversity, similar to those of IF-fed and HM-fed healthy toddlers. Compared with healthy toddlers, the toddlers with CMPA showed an increased abundance of phylum Bacteroidota, Firmicutes, class Clostridia, and Bacteroidia, and a decreased abundance of class Negativicutes, while pHF feeding partly eliminated these original differences. Moreover, pHF feeding increased the abundance of short-chain fatty acid producers. Our data suggested that this pHF partly simulated the beneficial effects of HM and shifted the gut microbiota of toddlers with CMPA toward that of healthy individuals. In conclusion, this synbiotic-containing pHF might be an appropriate alternative for toddlers with CMPA.

8.
Inorg Chem ; 63(8): 3974-3985, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346714

RESUMO

Designing transition-metal oxides for catalytically removing the highly toxic benzene holds significance in addressing indoor/outdoor environmental pollution issues. Herein, we successfully synthesized ultrathin LayCoOx nanosheets (thickness of ∼1.8 nm) with high porosity, using a straightforward coprecipitation method. Comprehensive characterization techniques were employed to analyze the synthesized LayCoOx catalysts, revealing their low crystallinity, high surface area, and abundant porosity. Catalytic benzene oxidation tests demonstrated that the La0.029CoOx-300 nanosheet exhibited the most optimal performance. This catalyst enabled complete benzene degradation at a relatively low temperature of 220 °C, even under a high space velocity (SV) of 20,000 h-1, and displayed remarkable durability throughout various catalytic assessments, including SV variations, exposure to water vapor, recycling, and long time-on-stream tests. Characterization analyses confirmed the enhanced interactions between Co and doped La, the presence of abundant adsorbed oxygen, and the extensive exposure of Co3+ species in La0.029CoOx-300 nanosheets. Theoretical calculations further revealed that La doping was beneficial for the formation of oxygen vacancies and the adsorption of more hydroxyl groups. These features strongly promoted the adsorption and activation of oxygen, thereby accelerating the benzene oxidation processes. This work underscores the advantages of doping rare-earth elements into transition-metal oxides as a cost-effective yet efficient strategy for purifying industrial exhausts.

9.
Food Chem ; 442: 138401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219570

RESUMO

Molecular docking and activity evaluation screened the dipeptide module GP with low xanthine oxidase (XOD) inhibitory activity and modules KE and KN with high activity, and identified them as low- and high-contribution modules, respectively. We hypothesized the substitution of low-contribution modules in peptides with high contributions would boost their XOD inhibitory activity. In the XOD inhibitory peptide GPAGPR, substitution of GP with both KE and KN led to enhanced affinity between the peptides and XOD. They also increased XOD inhibitory activity (26.4% and 10.3%) and decreased cellular uric acid concentrations (28.0% and 10.4%). RNA sequencing indicated that these improvements were attributable to the inhibition of uric acid biosynthesis. In addition, module substitution increased the angiotensin-converting enzyme inhibitory activity of GILRP and GAAGGAF by 84.8% and 76.5%. This study revealed that module substitution is a feasible strategy to boost peptide activity, and provided information for the optimization of hydrolysate preparation conditions.


Assuntos
Peptidil Dipeptidase A , Xantina Oxidase , Simulação de Acoplamento Molecular , Ácido Úrico , Peptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
12.
Biol Reprod ; 110(2): 246-260, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37944068

RESUMO

Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3ß, which was confirmed by injections of GSK3ß inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3ß pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.


Assuntos
Indóis , Maleimidas , Proteína Supressora de Tumor p53 , Útero , Gravidez , Animais , Feminino , Camundongos , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Útero/metabolismo , Apoptose , Células Epiteliais/metabolismo , Camundongos Knockout , Mamíferos/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
13.
Reprod Sci ; 31(1): 248-259, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644378

RESUMO

Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.


Assuntos
Dinoprosta , Progesterona , Gravidez , Camundongos , Feminino , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Dinoprosta/farmacologia , 20-Hidroxiesteroide Desidrogenases/genética , 20-Hidroxiesteroide Desidrogenases/metabolismo , Corpo Lúteo/metabolismo , Parto , Mamíferos/metabolismo
14.
mBio ; 15(2): e0275223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126747

RESUMO

Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Amônia , Disbiose , Ácido Gálico/efeitos adversos , Colite/induzido quimicamente , Aminoácidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
15.
Int Immunopharmacol ; 125(Pt B): 111175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976601

RESUMO

OBJECTIVE: Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS: CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS: We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION: CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Benzilisoquinolinas , Animais , Camundongos , Lipopolissacarídeos , Artrite Reumatoide/tratamento farmacológico , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Inflamação
16.
Infect Control Hosp Epidemiol ; : 1-3, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982262

RESUMO

To improve contact tracing for healthcare workers, we built and configured a Bluetooth low-energy system. We predicted close contacts with great accuracy and provided an additional contact yield of 14.8%. This system would decrease the effective reproduction number by 56% and would unnecessarily quarantine 0.74% of employees weekly.

17.
Front Genet ; 14: 1209988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028622

RESUMO

Background: The pathogenesis of common variable immunodeficiency disorder (CVID) is complex, especially when combined with autoimmunity. Genetic factors may be potential explanations for this complex situation, and whole genome sequencing (WGS) provide the basis for this potential. Methods: Genetic information of patients with CVID with autoimmunity, together with their first-degree relatives, was collected through WGS. The association between genetic factors and clinical phenotypes was studied using genetic analysis strategies such as sporadic and pedigree. Results: We collected 42 blood samples for WGS (16 CVID patients and 26 first-degree relatives of healthy controls). Through pedigree, sporadic screening strategies and low-frequency deleterious screening of rare diseases, we obtained 9,148 mutation sites, including 8,171 single-nucleotide variants (SNVs) and 977 Insertion-deletions (InDels). Finally, we obtained a total of 28 candidate genes (32 loci), of which the most common mutant was LRBA. The most common autoimmunity in the 16 patients was systematic lupus erythematosis. Through KEGG pathway enrichment, we identified the top ten signaling pathways, including "primary immunodeficiency", "JAK-STAT signaling pathway", and "T-cell receptor signaling pathway". We used PyMOL to predict and analyse the three-dimensional protein structures of the NFKB1, RAG1, TIRAP, NCF2, and MYB genes. In addition, we constructed a PPI network by combining candidate mutants with genes associated with CVID in the OMIM database via the STRING database. Conclusion: The genetic background of CVID includes not only monogenic origins but also oligogenic effects. Our study showed that immunodeficiency and autoimmunity may overlap in genetic backgrounds. Clinical Trial Registration: identifier ChiCTR2100044035.

18.
Clin Immunol ; 257: 109850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38013165

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Humanos , Ratos , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Epóxido Hidrolases/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
20.
Inorg Chem ; 62(33): 13544-13553, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37561968

RESUMO

In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...